Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Atmos Space Cargo’s Phoenix Capsule Set for First Orbital Test on SpaceX Mission

Share

A cargo-return technology developed by Germany-based Atmos Space Cargo is set to undergo its first in-space test with an upcoming SpaceX mission. The company’s Phoenix capsule will be launched aboard the Bandwagon 3 rideshare mission, scheduled for no earlier than April. The capsule has been designed to facilitate the safe return of high-value materials from orbit, particularly benefiting the biomedical sector. The test mission aims to gather crucial data on the capsule’s subsystems, onboard payloads, and reentry performance.

Mission Objectives and Scientific Payloads

According to reports, the Phoenix capsule will carry four payloads, including a radiation detector from the German Aerospace Center (DLR) and a bioreactor from UK-based Frontier Space. The mission’s primary goals include testing Phoenix’s performance in orbit, evaluating data from customer experiments, and deploying its proprietary inflatable atmospheric decelerator (IAD) for reentry stabilisation. This technology, acting as both a heat shield and parachute, is intended to enable a controlled descent back to Earth.

Challenges in Returning Space Cargo

Industry experts highlight that while the cost and complexity of launching experiments into space have been reduced, bringing them back to Earth remains a challenge due to high costs, long turnaround times, and technical difficulties. Atmos Space Cargo has positioned Phoenix as a cost-effective and reliable solution for returning biomedical samples, microgravity-manufactured materials, and other sensitive payloads.

Future Prospects and Industry Impact

Despite expectations that Phoenix will not survive its debut mission, the collected data will contribute to future improvements. Larger iterations of the capsule are planned to carry heavier payloads, including potential returns of rocket stages. Advisory board member and former NASA Deputy Administrator Lori Garver has stated that advancements in reusable and affordable cargo return technology are critical for the future of orbital space operations. The initiative aligns with broader efforts to enhance accessibility to in-space manufacturing and research.