Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Chandrayaan-2 Lunar Orbiter Avoided Collision With Danuri Spacecraft in September, Reveals ISRO

Share

India’s Chandrayaan-2 lunar orbiter performed a manoeuvre in September to prevent a close encounter with the Korea Pathfinder Lunar Orbiter (KPLO), officially known as Danuri, according to the Indian Space Research Organisation (ISRO). The adjustment carried out on September 19, 2024, was necessary to avoid a potential collision between the two orbiters, which was projected for two weeks later if no changes were made to Chandrayaan-2’s trajectory.

Following this, on October 1, 2024, another orbital modification was implemented to maintain separation from other lunar orbiters, including NASA‘s Lunar Reconnaissance Orbiter (LRO), as per an ISRO report.

Frequent Collision Risks Among Lunar Orbiters

Around the lunar poles, orbiters such as Chandrayaan-2, Danuri, and LRO share a similar near-polar path, increasing the likelihood of close approaches. Over the past 18 months, the Korea Aerospace Research Institute (KARI), which operates Danuri, reported having received over 40 collision alerts for interactions among Danuri, Chandrayaan-2, and LRO. These alerts, referred to as “red alarms,” underscore the growing risk of accidental collisions as multiple international agencies operate missions in close proximity around the Moon.

Previously, in 2021, Chandrayaan-2 reportedly avoided a similar situation by shifting its path, preventing a close pass by LRO that would have brought the two within just three kilometres. Danuri itself has performed at least three orbital adjustments since it entered lunar orbit in December 2022, including avoiding both LRO and Japan’s Smart Lander for Investigating Moon (SLIM).

Lack of Unified Collision Protocols in Lunar Operations

At present, no globally coordinated protocol exists for managing collision risks around the Moon. Space agencies like ISRO, KARI, and NASA rely on direct communication, sharing spacecraft position data through email and teleconferences. However, according to Soyoung Chung, a senior researcher with KARI’s strategy and planning team, difficulties such as network security barriers and a lack of personnel contact information have, at times, complicated communication.

NASA’s Jet Propulsion Laboratory provides the Multimission Automated Deep-Space Conjunction Assessment Process (MADCAP) software, which estimates and warns of collision risks. Still, experts like Chung have suggested the need for a formal international framework for managing close approaches around the Moon.