Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Mysterious Planetary-Mass Objects May Form in Young Star System Clashes

Share

Free-floating planetary-mass objects have been observed drifting through young star clusters, raising questions about their origins. These objects, with masses around 13 times that of Jupiter, have been identified in large numbers within regions like the Trapezium Cluster in Orion. The discovery of 40 binary planetary-mass objects, referred to as Jupiter-Mass Binary Objects (JuMBOs), has challenged existing theories about their formation. Their presence has led scientists to investigate whether they originate like planets or stars, as neither process can fully explain their characteristics.

Formation Linked to Star System Collisions

According to a study published in Science Advances on February 26, simulations suggest that these objects may form during violent interactions between circumstellar disks surrounding young stars. Deng Hongping of the Shanghai Astronomical Observatory at the Chinese Academy of Sciences told Phys.org that planetary-mass objects do not align with the typical classifications of stars or planets, indicating a distinct formation process linked to young star clusters.

New Insights into Rogue Planetary Objects

As reported, previous theories suggested that free-floating planetary-mass objects were planets ejected from their home systems due to gravitational interactions. However, the discovery of binary JuMBOs contradicts this, as the likelihood of such an event occurring without breaking the pair is low. Alternative explanations, such as them being brown dwarfs, have also been questioned, as binary rates decrease significantly for lower-mass stellar bodies.

Simulations Reveal a Different Mechanism

High-resolution hydrodynamic simulations by the research team demonstrated that circumstellar disk collisions at high speeds could create tidal bridges of gas and dust. These structures collapse into filaments that fragment, forming planetary-mass objects. The study found that 14% of these objects emerge in binary or triplet systems, providing a possible explanation for the large number of JuMBOs observed in Orion.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Asus VU Air Ionizer Series Monitors With Airborne Dust Reduction and 100Hz Refresh Rate Announced



Vanvaas OTT Release Date: Utkarsh Sharma, Nana Patekar’s Film to Premiere on ZEE5