Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

NASA New Study Challenges RNA’s Role in Life’s Molecular Handedness Mystery

Share

A recent NASA-funded study has observed findings about the molecular processes that might have shaped the origins of life on Earth. Research published in Nature Communications suggests that ribonucleic acid (RNA), a molecule believed to have predated DNA, exhibits no inherent bias in producing the left- or right-handed versions of amino acids. This challenges long-standing assumptions about why life predominantly uses left-handed amino acids in its proteins, a phenomenon known as homochirality.

The Enigma of Molecular Handedness

Amino acids, the essential building blocks of proteins, exist in two mirror-image forms: left-handed and right-handed. Life on Earth exclusively relies on the left-handed variety, though there is no apparent reason right-handed amino acids would not function similarly. This phenomenon has baffled scientists, as it appears to reflect a fundamental aspect of biology. The current study, led by Irene Chen, Professor at the UCLA Samueli School of Engineering, tested ribozymes—RNA molecules capable of acting like enzymes under early-Earth conditions. The results indicated that ribozymes could favour either handedness, undermining the notion that RNA inherently favoured the left-handed type.

Implications for Life’s Early Evolution

The research involved simulating primitive Earth conditions, where ribozymes were exposed to amino acid precursors. In 15 tested combinations, no consistent bias towards left-handed amino acids was observed. This discovery suggests that homochirality may have emerged through evolutionary processes rather than as a result of RNA’s chemical preferences. Co-author Alberto Vázquez-Salazar, a UCLA postdoctoral scholar, noted that these findings imply that life’s molecular handedness likely arose later in its development.

Future Research on Life’s Molecular Origins

Jason Dworkin, Senior Scientist at NASA’s Goddard Space Flight Center, emphasised that understanding life’s molecular properties informs the search for extraterrestrial life. Current analysis of samples from asteroid Bennu, brought back by NASA’s OSIRIS-REx mission, includes studying amino acid handedness. Such investigations may uncover further clues about the origin of homochirality and its role in life’s development.

The research was funded by NASA, the Simons Foundation, and the National Science Foundation, contributing valuable insights into one of life’s most profound mysteries.

(Disclaimer: New Delhi Television is a subsidiary of AMG Media Networks Limited, an Adani Group Company.)