Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

NASA’s Atmospheric Waves Experiment Captures Gravity Waves From Hurricane Helene in Florida

Share

On September 26, 2024, as Hurricane Helene battered Florida’s Gulf Coast, it produced significant storm surges, impacting numerous communities across the region. During this extreme weather event, NASA’s Atmospheric Waves Experiment (AWE), stationed aboard the International Space Station, observed gravity waves in the atmosphere approximately 55 miles above Earth’s surface. This data, gathered as part of NASA’s study on space weather, aims to shed light on how terrestrial weather impacts technological systems such as satellites and communication networks.

Observations from NASA’s AWE Instrument

As the International Space Station crossed the southeastern United States, the AWE instrument recorded large concentric waves in the atmosphere, originating from the intense conditions stirred by Hurricane Helene. These gravity waves, which appear as artificially coloured bands in red, yellow, and blue, depicted changes in radiance within the Earth’s mesosphere. The imagery, enhanced with colour to highlight infrared brightness variations caused by airglow, captured waves stretching westward from northern Florida.

Significance of Atmospheric Gravity Waves

According to Ludger Scherliess, Principal Investigator of NASA’s AWE at Utah State University, the waves resemble the ripples produced when a pebble hits the surface of a pond. The instrument, launched in November 2023, was designed to identify these atmospheric disturbances, which include storms, hurricanes, and other violent weather events that cause gravity waves. The analysis of such atmospheric changes, produced during turbulent weather, provides essential insights into how terrestrial events influence conditions in space.

Research Implications for NASA

The gravity waves from Hurricane Helene are among the first images released to the public by the AWE mission. Through these observations, NASA seeks to understand how Earth’s weather systems impact the upper atmosphere and space weather. The AWE instrument’s ability to detect these disturbances contributes to ongoing research, enhancing NASA’s efforts to assess the potential disruptions to Earth-orbiting systems.