Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Scientists Uncover New Form of Magnetism That Could Be the Key to Superconductivity

Share

A new category of magnetism, identified as “altermagnetism,” has been discovered, potentially unlocking new advancements in superconducting materials and magnetic memory devices. This development, made by researchers using advanced imaging techniques, highlights how altermagnetism bridges the gap between two previously established types of magnetism. This breakthrough could lead to faster and more secure data storage systems, while also addressing long-standing challenges in superconductivity research.

Details from the Study

According to a study published in Nature, the research was led by Professor Peter Wadley at the University of Nottingham. The findings suggest that altermagnetic materials, unlike ferromagnetic or antiferromagnetic ones, feature magnetic moments that point alternately in opposite directions, but with a slight twist. This structure provides a combination of the strengths of both previously known magnetism types, enabling greater resilience, security, and functionality in memory storage.

Dr Oliver Amin, a postdoctoral researcher involved in the study, explained to Live Science that this form of magnetism incorporates the secure properties of antiferromagnets while retaining the ease of data manipulation found in ferromagnets. In contrast to ferromagnets, which are susceptible to interference, and antiferromagnets, which are difficult to manipulate, altermagnets demonstrate unique qualities that address both challenges.

Significance of Time Reversal Symmetry Breaking

As per the research team, altermagnetic materials possess a rare property called time reversal symmetry breaking. This allows certain electrical behaviours to exist that were previously unattainable. It also enables precise control of internal magnetic structures. Using photoemission electron microscopy, the team successfully mapped magnetic domains and manipulated the materials through thermal cycling techniques.

Future Applications

These findings could lead to the development of advanced magnetic memory systems and spintronic devices, offering increased speed and resilience. Additionally, the study suggests that altermagnetism might serve as the missing link in superconductivity research, filling a gap in symmetry-related challenges. This discovery could open the door to revolutionary applications in electronics and materials science.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


1.95-Million-Year-Old Evidence of Hominin Activity Discovered in Romania



Tecno Camon 40 Series Phones Reportedly Spotted on FCC, NBTC Certification Sites