Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Tracing the Origins of Oaks: How Climate and Tectonic Changes Shaped Modern Trees

Share

Rising global temperatures and shifting tectonic plates are believed to have shaped the development of one of Earth’s most iconic trees, the oak (Quercus). According to reports, the Paleocene-Eocene Thermal Maximum (PETM), a significant climatic event approximately 56 million years ago, created extreme conditions that influenced the evolution of diverse plant species, including the ancestors of modern oaks. This event occurred during a time of volcanic activity that released massive amounts of carbon into the atmosphere, leading to an average temperature increase of 8 degrees Celsius globally.

The Impact of the PETM on Early Ecosystems

It has been documented that the PETM caused dramatic changes in both terrestrial and marine ecosystems. According to sources, tropical forests expanded across South America, while plant and animal species migrated vast distances in response to rising temperatures. The fossil record suggests that during this period, the ancestors of today’s oaks began to emerge, though evidence such as acorns and pollen remains sparse.

First Oak Fossils Discovered in Austria

Fossilised oak pollen was first identified in Oberndorf, Austria, near the site of the Church of Saint Pankraz. Reports indicate that this discovery provides the earliest evidence of oaks dating back to the PETM. The surrounding forests, a mosaic of subtropical and temperate species, were home to plants that later contributed to modern biodiversity.

The Evolutionary Split of Oaks

As the Atlantic Ocean widened, dividing North America and Europe, reports suggest that the ancestral oak population split into two major lineages. One evolved in the Americas, while the other adapted to regions in Eurasia and North Africa. This separation is attributed to tectonic activity and natural barriers, which likely played a critical role in the diversification of oak species. The history of oaks exemplifies the gradual process of evolution driven by environmental factors, with their legacy continuing into today’s temperate forests.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Oppo Reno 13 5G Series India Launch Teased; Design, Colour Options, Availability Revealed



Samsung Display, HiDeep Exploring New S Pen Technology That Doesn’t Need Digitiser or Battery: Report