Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Voyager 2’s Historic Flyby of Uranus Exposes Rare Magnetic Distortion

Share

A recent analysis of 38-year-old data from NASA’s Voyager 2 spacecraft has provided fresh insights into the unique magnetosphere of Uranus, according to a study published on November 11 in Nature Astronomy. During Voyager 2’s 1986 flyby, Uranus’ magnetosphere was found to be unexpectedly distorted by a blast of solar wind. The findings suggest that the planet’s magnetic field behaves unlike any other in the solar system.

Findings Highlight Unusual Magnetic Structures

Jamie Jasinski, a planetary scientist at NASA’s Jet Propulsion Laboratory and California Institute of Technology, and lead author of the study, noted that Voyager 2’s timing happened to coincide with an intense solar wind event, a rare occurrence near Uranus. This compression of Uranus’s magnetosphere, seen only around 4% of the time, is thought to be responsible for the unique measurements Voyager captured. Had the spacecraft arrived even a week earlier, Jasinski observed, these conditions would likely have been different, possibly leading to alternative conclusions about Uranus’s magnetic characteristics.

Unlike Earth, Uranus exhibits a complex “open-closed” magnetic process, influenced by its extreme axial tilt. This tilt subjects Uranus to highly variable solar wind effects, resulting in a magnetosphere that opens and closes cyclically.

Implications for Future Uranus Exploration

The study’s conclusions go beyond Uranus itself, offering insights into the magnetic behaviours of its outermost moons, including Titania and Oberon. These moons, it turns out, lie within Uranus’s magnetosphere rather than outside it, making them candidates for investigations into subsurface oceans through magnetic field detection. As Jasinski highlighted, these conditions would simplify detecting any magnetic signatures that suggest liquid beneath the moons’ icy surfaces.

While Voyager 2 remains the only mission to visit Uranus, the study’s findings underscore a growing interest in exploring the ice giant in greater detail.